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Abstract--The analysis of experimental data obtained by the 
multiple-indicator method requires complex mathematical mod- 
els for which capillary blood-tissue exchange (BTEX) units are 
the building blocks. This study presents a new, nonlinear, two- 
region, axially distributed, single capillary, BTEX model. A fa- 
cilitated transporter model is used to describe mass transfer be- 
tween plasma and intracellular spaces. To provide fast and ac- 
curate solutions, numerical techniques suited to nonlinear 
convection-dominated problems are implemented. These tech- 
niques are the random choice method, an explicit Euler-Lagrange 
scheme, and the MacCormack method with and without flux 
correction. The accuracy of the numerical techniques is demon- 
strated, and their efficiencies are compared. The random choice, 
Euler-Lagrange and plain MacCormack method are the best nu- 
merical techniques for BTEX modeling. However, the random 
choice and Euler-Lagrange methods are preferred over the Mac- 
Cormack method because they allow for the derivation of a heu- 
ristic criterion that makes the numerical methods stable without 
degrading their efficiency. Numerical solutions are also used to 
illustrate some nonlinear behaviors of the model and to show 
how the new BTEX model can be used to estimate parameters 
from experimental data. 

Keywords--Random choice method, Euler-Lagrange method, 
MacCormack method, Flux-corrected transport, Capillary per- 
meability. 

INTRODUCTION 

The interpretation of  experimental data obtained by 
tracer outflow experiments relies on the availability of  
appropriate mathematical models. Despite evidence of  the 
nonlinearity of many axially distributed blood-tissue ex- 
change (BTEX) processes, few models have been pro- 
posed that describe their full dynamic behavior. A corn- 
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mon approach to study such nonlinear processes is to in- 
fuse into the circulation a constant level of a substrate of 
interest and to wait for steady-state. This step is usually 
followed by a rapid injection of minute amounts of radio- 
labeled tracers. With respect to the analysis of  data, such 
tracer experiments are advantageous because the solution 
to the nonlinear model equations is only needed for the 
steady-state. The time-dependent tracer equations are au- 
tomatically linearized thanks to the assumption that the 
radioactive marker does not change the state of  the system, 
because its concentration is negligible in comparison with 
the background concentration of nontracer substrate. The 
problem with this experimental method is that it only pro- 
vides information on the system at a particular state. To 
understand the nonlinear behavior of  the processes, it is 
necessary to do several experiments to obtain steady-state 
concentrations that span the entire nonlinear range. How- 
ever, long constant infusions of  high doses of  substrate are 
problematic in vivo, because they can jeopardize the life of 
the organ under investigation or modify its physiological 
state to an extent such that the experiment is no longer 
relevant. To avoid the aforementioned difficulties, Mal- 
corps et al. (22) have developed the "bolus sweep" tech- 
nique (see Ref. 22 for a discussion of this technique versus 

constant-infusion techniques). This procedure consists of a 
rapid injection of  a bolus containing both radiolabeled 
substrate and a sufficient amount of nontracer substrate to 
sweep the nonlinear range of  concentration. Therefore, 
one experiment brings enough information to estimate the 
actual parameters of a nonlinear model. On the other hand, 
data from "bolus sweep" experiments are more difficult 
to analyze, in particular, because they require the capabil- 
ity to solve complicated, nonlinear, time-dependent mod- 
els. 

The present study introduces a new, two-region, axially 
distributed BTEX model with nonlinear facilitated trans- 
port and reaction. The aim of  this study is to present the 
methods that will serve for the development of more so- 
phisticated nonlinear models. Therefore, emphasis is put 
not as much on the model itself as on the means used to 
solve it and to analyze experimental data with it. The 
model solutions are obtained with three numerical tech- 
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niques suited to nonlinear convection-dominated prob- 
lems. The three methods are presented and compared in 
terms of their numerical efficiency--which represents the 
trade-off between accuracy and computational speed--and 
robustness. Once we have established the capabilities of 
the numerical methods, we proceed to show some general 
features of the new nonlinear model. We conclude by 
demonstrating how parameters of the model can be reli- 
ably estimated from simulated data with noise. 

In the intracellular region, c: 

Of c PSp_, c PSc__,p + G c 02Cc 
Ot - + ~ C p  Vc C~+D c-Ox 2. (2) 

The auxiliary conditions associated with these equations 
are at the initial time to: 

Cp(x, t o) = Cc(x, to) = C o for 0 ~< x ~< L, (3) 

and at the boundaries: 

THE NONLINEAR AXIALLY DISTRIBUTED 
TWO-REGION BTEX UNIT 

The two-region, axially distributed BTEX unit is shown 
in Fig. 1. It is a Krogh tissue cylinder consisting of two 
regions (plasma and intracellular spaces) separated by one 
barrier. When the effects of convection, axial diffusion, 
permeation, and consumption are included, the spatial and 
temporal variations of concentration C of a substrate S in 
the intra- and extravascular spaces are described by two 
partial differential equations. In the plasma space, p: 

Cp(0, t) = Cin(t ) and 
oCp oG 

oG 
=Ox~ L t = 0  for t o < t .  (4) 

The derivation of Eqs. 1 and 2 assumes constant piston 
flow in the capillary and negligible radial concentration 
gradients in both regions. These assumptions and the 
choice of boundary conditions have been discussed in de- 
tail by Bassingthwaighte et al. (4). 

OCp FpLOCp PSp__,c+G G+PS~ p 02Cp 
oG - ox Cc + ~  . 

(1) 
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FIGURE 1. A model for a two-region, axially distributed BTEX 
unit with facilitated transport. (Background) The capillary is 
composed of two concentric cylindrical regions separated by 
one barrier. Subscripts are p for plasma and c for intracellular 
space. Fp =plasma flow rate; V=volume;  D=ax ia l  diffusion 
coefficient; G =  rate of consumption; PS--permeability- 
surface area products. (Foreground) Permeabilities across the 
barrier are determined by the transporter model. Circled S, T, 
and TS represents free substrate molecule, free transporter 
molecule, and transporter-substrate complex, respectively. At 
each side of the membrane, the three species are in equilib- 
rium. Only free transporter and complex molecules can "dif- 
fuse" across the membrane wall, K s = binding equilibrium 
constant; P+I = permeability for transporter-substrate com- 
plex from plasma to tissue; p_l = permeability for transporter- 
substrate complex from tissue to plasma; P§ and P-o are simi- 
lar quantities for free transporter. 

Facilitated Transporter 

The model incorporates a nonlinear facilitated trans- 
porter for radial exchanges. As a result, the permeability- 
surface area products are concentration-dependent. Figure 
1 shows a diagram of the nonlinear transporter. To de- 
scribe it, four new quantities are introduced: Tp and T c 
denote the surface concentration of free transporter T with 
binding site facing the plasma region and the intracellular 
region, respectively. TCp and TC c stand for the surface 
concentration of transporter-substrate complex TS facing 
plasma and intracellular space, respectively. Each of these 
quantities can be expressed in moles per membrane sur- 
face area or, when multiplied by the ratio membrane sur- 
face area to gram of tissue, in moles per gram. With this 
notation, the facilitated transporter is characterized by: 

(a) The total number of transporter sites per unit mem- 
brane surface area: 

T r =  Tp + TCp + Tc + TCr 

To reflect the conservation of the total number of trans- 
porter molecules, T r is constant at any fixed position along 
the capillary. In the present work, it is also assumed that 
the axial distribution of transporter total surface concen- 
tration is uniform, so that T r takes a unique value over the 
entire exchange unit. 

(b) The rates of permeation across the membrane for 
free transporter and transporter-substrate complex: During 
active transport, radial mass transfer occurs because bound 
and unbound transporters have the ability to translocate 
the active site on the transporter protein from one side of 
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the membrane to the other. Although the process of trans- 
location is not completely understood, it implies a confor- 
mational change in the membrane spanning (or integral) 
protein, and it can be modeled with effective permeation 
rate constants. In Fig. 1, P+I and p_~ denote the rate at 
which the transporter-substrate complex flips or translo- 
cates the substrate binding site in the direction from 
plasma to cell and from cell to plasma, respectively. P+o 
and P-o are similar quantities for free transporter. The p ' s  
are in units of inverse seconds. 

(c) The mechanism of association and dissociation be- 
tween transporter and substrate molecules: Free substrate 
molecules, S, and transporter molecules, T, combine in a 
one-to-one relationship to form a complex, TS. The bind- 
ing reaction is of first-order with respect to each reactant 
and is reversible: 

k) 
T + S ~c:~ TS, 

k~ 

with rates of formation at the plasma and cell side of the 
barrier being, respectively, 

dTCp + dTCc 
dt = kp Tp . Cp - kp TCp and dt 

= k + L . C c -  k~TrCc . 

To define the facilitated transporter completely, two 
additional assumptions are made. First, association and 
dissociation of substrate and transporter are assumed to be 
very fast, compared with radial transport events. Therfore, 
free substrate and transporter and transporter-substrate 
complex seem to be in continuous equilibrium at each side 
of the membrane. The binding mechanism is then de- 
scribed by the affinity constants: 

Ks - k2 _ C~" r~ kc _ cc"  rc (5) 
kp TCp and K ~ -  + TC~ p + c k~ 

at the plasma-membrane interface and at the membrane- 
cell interface, respectively. Although this first assumption 
is equivalent to the quasiequilibrium hypothesis of Micha- 
elis and Menten (23), the second assumption is compa- 
rable with the quasi-steady-state approach of Briggs and 
Haldane (7). It is assumed that the surface concentration of 
transporter (free and bound) molecules at one side of the 
membrane always reaches steady-state very rapidly. 
Therefore: 

d(r~ + rc . )  d(rc + rCc) 

dt dt 
- 0 .  ( 6 )  

Notice that the quantities Tp + TCp and T,. + TCc are not in 
a true steady-state, because their values change in response 
to a perturbation in Cp or C~. However, the changes in Tp 

+ TCp and T c + TC c occur so rapidly that these two quan- 
tities can be regarded as in steady-state with respect to the 
instantaneous values of Cp or C c. 

Equation 5 combined with the conservation of total 
transporter sites, and Eq. 6 provides two relations between 
Tp and T~: 

~pTp + gcTc = T r and "ypTp -~ ~ T  c, (7) 

where 

Cc 
gp = 1 + - ~ ,  8 c = 1 + K-fs ' ~p = P+o + P+1 ~--, 

Sp c Sp 

Cc 
and ~c = P-~ + P-1 -K--~c" 

Solving for free transporter surface concentrations and 
noting that the fluxes of substrate from plasma to cell and 
from cell to plasma are, respectively, 

Sp--,c =P+I TCp and $c--,p =P-1 TCc, 

one easily gets the permeability-surface area products: 

~cTTP+I 
PSp_~c - (~c~ p + ~p~c)Ks, ' and 

~pTTp-1 
PSc~ p - (8) 

(~c~3p + "Yp~c)Ksc. 

It is always possible to express the PS's above in terms 
of an apparent maximal transport rate via the transporter, 
Vma x, and an apparent Michaelis constant, Km, to show the 
equations in the form commonly used for first order Mi- 
chaelis-Menten reactions. For example, one might write 
PSp~c = Vm~xp/Kmp + Cp) with: 

"~c - ~c + P+o~c 
Vmaxp= TTp+I .yc + P+l~bc and ICmp= KSp ~c + P+lgc. 

(9) 

Similarly, one could define for PSc___~p: 

~P and K' ~P + P-O~3p 
= K  s Vmax~ = TTP-I "Yp + P-l~p mc " ~lp + P-13p(1 O) 

Notice that the quantities defined by Eqs. 9 and 10 depend 
on C c and Cp. However ,  they are constant  when 
P+o = P-0 = P+I = P-1 = P, which shows that the pre- 
sent transporter model is a generalization of Michaelis- 
Menten kinetics. The expressions of Eqs. 9 and 10 are 
compact in the sense that they group individual parameters 
of the transporter model. As we shall see in a later section 
dealing with the analysis of experimental data, this com- 
pactness sometimes proves useful when not all parameters 
of the model are distinguishable. In addition, the calcula- 
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tion of V m a  x and K m should facilitate comparison with 
existing results involving Michaelis-Menten kinetics. 

Reaction Kinetics 

The BTEX unit also accounts for consumption of sub- 
strate within each region, subscripted r. Two first-order, 
irreversible processes are available to model the removal 
of substrate: 

g m a x  r 
= r = c o r p .  G r Gmaxr o r  G r = K m r + C r  

Only the first scheme is linear. The second scheme corre- 
sponds to Michaelis-Menten kinetics, and this one is used 
to derive the time-step limits. 

Tracer and Nontracer Substrates 

Linear BTEX models are not necessarily inappropriate 
for the analysis of processes, wherein permeation and con- 
sumption parameters are actually concentration-dependent 
(see p. 560 of Ref. 2;14,17,19). However, the linearity of 
parameters requires that plasma and tissue concentrations 
of nontracer "mother" substrate be effectively uniform. 
Of course, this approximation will likely be wrong when 
substrate is consumed and is inadequate for the analysis of 
indicator-dilution experiments using rapid injection into 
the blood of bolus containing both labeled and unlabeled 
substrate (22). 

The nonlinear model presented herein accounts for 
axial gradients in nontracer concentration. To account for 
the most general situations, two systems of equations are 
solved simultaneously. The first system is given by Eqs. 1 
to 4 and yields the nontracer concentrations Cp and C c. 
The second system is obtained by replacing Cp and C c in 
Eqs. 1 to 4 by the corresponding tracer concentrations C* 
and C*. For both systems of equations, exchange and con- 
sumption parameters are function of the quantities 
cptot = Cp + C* and Ctc ~ : C c q- C'c, which, by defining a 
tracer to be at a molar concentration level negligible com- 
pared with that of the nontracer mother substance, reduce 
to Cp and C c, respectively. 

NUMERICAL METHODS OF SOLUTION 

The solution of general nonlinear models requires the 
use of numerical techniques. As shown by Bassing- 
thwaighte et al. (4), the latter can advantageously replace 
analytical solutions for the modeling of BTEX. In particu- 
lar, numerical techniques offer superior flexibility over 
analytical solutions, because slight changes in the model 
equations (like adding a source term or testing a new 
boundary condition) can often be handled by just modify- 
ing a few lines of the computer program. These advantages 

come with a price. First, numerical solutions are not exact 
due to numerical errors. Of course, the error of a conver- 
gent algorithm can be made smaller and smaller (down to 
the accuracy of the computer), but this gain in precision is 
always accompanied by a rise in computational time. 
Therefore, it is desirable to rate a numerical technique in 
terms of its efficiency (i.e., by evaluating the trade-off 
between accuracy and speed). When using a numerical 
technique, one must also be aware of its stability require- 
ments. Whereas sophisticated theories have been devel- 
oped for linear problems, the stability analysis for nonlin- 
ear systems relies largely on linearization and empiricism. 

In a previous work (24), we compared the efficiency of 
several numerical techniques for the solution of nonlinear 
convection-dominated problems with sharp fronts. We 
concluded that three methods were particularly attractive: 
the random choice technique, the Euler-Lagrange tech- 
nique, and MacCormack method with flux correction. The 
following sections describe the extension of these three 
methods to the nonlinear, two-region BTEX model. 

Random Choice Method 

Recent reviews of the random choice technique applied 
to nonlinear convection-dominated problems are available 
in Holt (16) and Finlayson (12). For the present BTEX 
unit, the random choice method is applied in two steps. In 
the first step, the plasma advective term is removed from 
the model equations, which are then solved to account for 
the effects of permeation, consumption, and axial diffu- 
sion. After that, an advection step is added in the plasma 
space. Note that the order of the two steps can be reversed. 

In the first step of the random choice technique, Eqs. 1 
and 2 are replaced by a nonlinear system of differential 
equations which, in matrix form; is: 

DC 02C 
Dt  = B ( c t ~  C + D  - -  

Ox 2" 
(11) 

The time derivative, D . / D t ,  is a substantial derivative as 
explained by Bird et al. (p. 73 of Ref. 5). C is the tracer 
concentration, and C t~ is the total concentration. Equation 
I 1 is solved by finite differencing from the current solu- 
tion time t n to the next time level t ~ +~ = t ~ + At. The 
initial condition is given by the vector of concentrations at 

n C c ) .  Because fast computations are time t~: C a = (Cp, , r 

desired, a first-order explicit Euler scheme is used to in- 
tegrate Eq. 11, and the diffusion term is approximated with 
a three-point centered finite difference (12). The resulting 
solution is a vector with components: Cp + 1 and C~ + 1. The 
latter is the new concentration in the intracellular space, 
but the former is only an intermediate quantity to which 
the effect of convective transport must be applied. 

Because the plasma velocity is constant, it is possible to 
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modify slightly the random choice technique to improve 
its speed during the advection step. With the linear advec- 
tive equation, a wave is propagated unchanged at speed 
u = Fp/Vp in the x direction. But to compute the movement 
of  such a wave, the numerical technique approximates the 
continuous spatiotemporal domain by a discrete domain 
{{i2xx; nAt} l ie  {0; 1 . . .  ; Nseg}, ne {0; 1 . . .  ; Nstp} } 
and, in the numerical approximation, a wave propagating 
in the x direction can only advance by increment of size 
zkx. So, after n whole time steps, the exact solution has 
traveled a distance: 

Sex(nAt) = n u At, 

whereas the numerical solution has covered a distance of  

~num(nAt) = k(nAt) 2tx, 

where k is a positive integer depending on time. Clearly, 
one will obtain a good approximation to the exact solution 
when, at any time, the difference 8 = Sex-  ~num is as 
small as possible and when, in addition, the time average 
of  Nt) is close to zero. The random choice technique uses 
random variables to ensure that the error ~ remains in the 
range [-2~x/2; &v/2] and that its average over time is 0. For 
the linear advection equation, however, it is faster not to 
use random variables but still achieve the same effect. If, 
at time P = nAt, we know Cp, i the numerical approxima- 
tion to Cp(i~tx, nat) and we also have k ~ = k(nAt) such 
that: 

lu n At - / ( '  ~Xxl ~< koc/2. 

Then, we define the solution to the advection step at time 
p+l according to: 

Cpn+ 1 = 
,t 

C;, i and k ~+l = k ~ if luP +l - k" &vl < 2ix~2 
(12) 

C~,i_ 1 and k ~+l=k  n + l  if lut n + l - k  ~2~x1>~c/2" 

This algorithm requires that k be known at the initial time. 
k ~ is picked equal to 0, which means that initial and bound- 
ary conditions are assumed to coincide with the exact so- 
lution. Naturally, when the advection step is the second 
stage in the solution process, Cp + 1 is substituted for C~p in 
Eq. 12. Finally, notice that the previously described for- 
mula  impl ic i t ly  assumes that the Courant  number  
Co = uAt/2~x is less than or equal to unity, which is re- 
quired by the random choice method. The Courant number 
is how far the fluid moves in a time step compared with 
the grid spacing. 

To reach the design goals, we also need a stability 
criterion for the method. A global stability analysis is ex- 
tremely difficult to derive because of  the nonlinearities. 
Nevertheless, it is possible to study the local behavior of 
the numerical technique using Von Neumann stability 

analysis in the way recommended by Fletcher (p. 162 of  
Ref. 13) for nonlinear equations. 

For the random choice method, the convection step is 
always stable. Thus, the stability of  the technique depends 
on the stability of the first stage in the solution process: 

{ (.~,n+l -- ~cci 
-p.i ' -RHSp(i;  Cp; C~) (13a) 

A t  

C ~+1 - C~i 
--c,i ' -RHSc( i ;  C~p; C~), (13b) 

At 

where 

RHSp(i; C~," C~c ) - PSP-'r + Gp'i n 
Wp C;'i 

PSc---)p i n 
"1- ~ Cc'i 

+ a x  2 (~,~+' 

- 2 C;, i q- C;, i 1) 

PSp--+c i 
RHSc(i; C~p; C~) = + ~ C~p.i 

PSc---~p,i + Gc i 
Vc ' c~,~ 

Dc 
-{- ~kX2 (Ccn, i+l 

k... - 2 C'~,i + c n ,  i - 1)" 

To overcome the mathematical difficulties created by non- 
linearities, permeability-surface area products and con- 
sumption rates are temporarily " f rozen" .  With PS's and 
G's  being locally constant, the Von Neumann stability 
analysis can be applied (26). Assuming solutions to the 
linearized system can be written as Fourier series: 

j=+c~ 

Y__., dr, j= -- oo (0 - ~ -< 2"rr; r = p or c; 12 = - 1), 

(14) 

and substituting the Fourier series for each concentration 
in Eq. 13 yields a relation between the Fourier coefficients 
at time t n+l and those at the preceding time level: 

~,,.1 = (I + AtA)C n. (15) 

G = I + AtA is called the amplification matrix. I denotes 
the identity matrix, and A is given by: 
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(eSp---)c'i?ap'i Vp q- 4Dp sin Ax 2 

A = (ao) = PSp~c, i 

Vc 

PSc--~P'ivI ~ ] 

{PSc~p, i+Gc, i  4Dc �9 2~'~ " (16) 
- Vc +jslnu 

A necessary condition for stability is that both eigenvalues 
of the amplification matrix have a norm less than unity. 

The eigenvalues are easily determined: 

h_+ : l + - ~ [ a , 1 + a 2 2  -+ V / ( a l l  - a22)2+4a12ael]  �9 

(17) 

They are real with h less than or equal to h+. Therefore, 
for their values to lie in the interval between -1 and 1, two 
conditions must hold: 

a12 a21 ~ a~l a22 (18) 

A t [ - ( a l l  + a22) + ~V'/(a,1 - a22) 2 + 4a12 a2, ] --< 4. 
(19) 

Interestingly, the first of these relations does not involve 
the time step. 

The model is normally limited to consumption of sub- 
strate (i.e., Gr >- 0), and we can base the analysis on Eqs. 
18 and 19. It is readily verified that, when Gr -> 0, Eq. 18 
always holds. Thus, Eq. 19 can be recast into the simpler 
form that is faster to compute (something that is useful, 
because the coefficients a;i are usually different at each 
time step and at each mesh point): 

2 

At <_ At i - PSp---~c, i -t- Gp i 4 Op PSc---~p i -t- G C i 4Dc' 
Vp "] ' -~x  2-1- ~c ' 

_]_ m 

A X  2 

(2o) 

because on one hand: 

- (all + a22) + ~v/(a~l - a22) 2 + 4a12 a21 
--< - 2(all + a22), (21) 

and, on the other hand, the quantity - (a  u + a22)--as a 
linear function of sin2((,/2)--is maximum when sin2(~/2) is 
equal to 1. 

For the present nonlinear BTEX model, Eq. 20 is tested 
at each node of the discrete spatial domain to automati- 
cally provide a "stable" time step m/ l i  m = M i n { A t i l i  

{0; l . . .  ; Nseg}} to advance the solution from the cur- 
rent time t to t + Atzi m. This heuristic is an approximation 

that works well in practice to keep the solution process 
stable without degrading the efficiency of the numerical 
technique. To account for the lack of rigor in the analysis 
(because the coefficients are frozen at their local values), 
we have introduced a scaling factor, F, in the final stability 
criterion: 

At ~< F Atl i  m.  (22) 

F is parameter that can be adjusted by the user of the 
simulation program to choose a stricter (F < 1) or looser 
(F > 1) way of selecting the time step used by the numeri- 
cal technique. In practice, it is safer to use a time step that 
is slightly below the stability limit defined by Afii m. There- 
fore, we recommend setting F to a value below 1 (e.g., 
F = 0.9). Nevertheless, experience shows that the model 
is very robust, even with F equal to 1. When F is set above 
that limit, the numerical scheme sometimes remains 
stable, but, in general, it does not. Therefore, it is wise to 
always keep F below unity. 

When the reactions involve production of a species 
(i.e., G r < 0), one of the eigenvalues is always greater than 
1. As explained by Richtmyer and Morton (26), the sta- 
bility argument must be adjusted to allow for a "legiti- 
mate" exponential growth of the exact solution. There- 
fore, when substrate is produced within the BTEX unit, it 
is necessary to revise the stability analysis with looser 
requirements, namely Ih _ I ~< 1 + o(At). 

Euler-Lagrange Method 

Like the random choice technique, the Euler-Lagrange 
technique dissociates convection from the other phenom- 
ena occurring in the exchange unit. Consequently, Eq. 11 
is solved before the effect of advection is added. In the 
Euler-Lagrange method, however, the convection step is 
solved exactly because the spatial discretization of the 
intravascular space uses a mesh that moves along with the 
flowing plasma. The ensuing difficulty is that nodes of the 
moving mesh do not, in general, coincide with nodes of 
the fixed mesh, which is used in the intracellular space. 
Therefore, some extra work is needed to evaluate the 
amount of mass exchanged between regions. 

Let ~ denote the abscissa of the jth node of the moving 
mesh at time t ~ and x i that of the ith node of the fixed 
mesh. Let us emphasize that, in the following discussion, 
discrete quantities with subscript j are known at the nodes 
of the moving mesh (which will be referred to as the j 
mesh), whereas discrete quantities with subscript i are 
known at the nodes of the fixed mesh (the i mesh). Figure 
2 shows the concentration values available at the begin- 
ning of a time step (e.g., at time t~). At this time, we know 
Cp, j and C'~. i, the numerical approximations to the con- 
centration in the plasma at ~ and in the intracellular space 
at x i, respectively. 
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At t n - Xi-1 Xi Xi+l 
" " -  /-mesh r -" "c ,.. c:",i 

n 

Cp, j j -mesh At t n . . . .  o o o 

FIGURE 2. Data available at the beginning of a time step in 
the Euler-Lagrange method. 

The key step is to calculate a solution (e.g., for Cc, i) on 
the fixed grid when it depends on the solution (for Cp, j) on 
a moving grid. Interpolation back and forth is necessary. 
The scheme used herein was developed following Finlay- 
son (12) with much experimentation to improve it and 
make it more efficient. Further details are given in Poulain 
(25). The Euler-Lagrange method we present is calculated 
two ways. In the first method, the plasma concentration is 
interpolated from the fixed grid to the moving grid, but the 
method adds excessive dispersion because piecewise lin- 
ear interpolation is used. In the second method, the right- 
hand side of the plasma equation is interpolated from the 
fixed grid to the moving grid, but this method oscillates 
near sharp fronts when piecewise linear interpolation is 
used. The final method uses a combination of these two 
methods in such a way to avoid excessive dispersion while 
avoiding oscillations near sharp fronts. 

In the first method (Fig. 3), one starts by interpolating 
values of the plasma concentration at t" from the j mesh 
onto the i mesh. Then, Cp, i = Hc~p,j(Xi), and C~, i are used to 
compute the new intracellular concentration on the i mesh: 

C'~, + ~ = cn i + AtRHSc(i; C~; C~). (23) 

On this same mesh, one can also obtain an approximation 
of the plasma concentration at the new time with: 

~p,+ l = Cp, i + AtRHSp(i; Cp; C~). (24) 

Next, the value of Cp + ~ are interpolated back from the i 
mesh onto the oldj mesh. This gives the provisional quan- 

~ n + l  tity Cp, j to which the effect of convection is added with 

Cpn+l - n + l  n + l  n ,: = Cp, j and ~j = ~ +uAt (25) 

to obtain the new plasma concentration profile along the 
capillary. 

We applied the scheme of Fig. 3 with several types of 
interpolation. None gave satisfactory results in the pres- 
ence of sharp plasma concentration fronts. Piecewise qua- 
dratic polynomial interpolation and cubic spline interpo- 
lation give rise to oscillations near steep axial gradients. 
On the other hand, piecewise linear interpolation leads to 
a solution that is excessively smoothed. This numerical 

1) Start at Figure 2. Interpolate to find C~p,i" 

�9 .. �9 
v 

. . t  t 
I I 

n 
Cp, j 

�9 " 0 0 

c:,i 

Interpolate 
5" I -""with H ~ , j  

0 
n ton+. 1 2) Use C~p,i, Cc, i, and Eq. 23 to compute vc,,  �9 

3) Use C~p i, Cn and o 24 to compute (%n+l , c ,  i ,  E .  ~ p ,  i �9 

~ + 1  
4) Interpolate to find C~p, j .  

C c  n+l  ,i 

. . I  I 
4, 4, 

P,J 
�9 " 0 �9 

~n+l 
p,i 
I I Interpolate 

4" with H~,)I 

o 
5) Add the effect of convection (See Eq. 25). 

FIGURE 3. Schemat ic  for a prel iminary explicit  Euler- 
Lagrange scheme (Eqs. 23 to 25), with cell concentration in- 
terpolated. 

smearing is somewhat attenuated when higher order es- 
sentially nonoscillatory piecewise interpolation polynomi- 
als (15) are used, but solutions remain unsatisfactory. 

The second scheme is presented in Fig. 4. As previ- 
ously described, Cp is interpolated from the j mesh onto 
the i mesh, and a finite difference computation on the latter 

1) Follow steps 1 and 2 of Figure 3. 

2) Compute RHSg, i . n n = RHSp(  t; Cp ; Cc ). 

3) Interpolate to find RHSp, j :  

cn+l 
c,i 

...~_ -_ ~, 

RHSp,i  

I I I 
4, 4, 4, 

RItS~, j  
�9 - 0 0 0 

n (%n+l 
4) Use C~p,j, RHSp,  j ,  and Eq.26 to compute vp,  j .  

5) Add the effect of convection (See Eq. 25). 

I Interpolate 
~'ith H RHS. 

p,i 

FIGURE 4. Schematic for an improved explicit Euler-Lagrange 
scheme (Eq. 26) with RHS interpolated. 
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n grid yields C~ ~, + '. Next, the quantity RHSp, i : RHSp(i; 
Cp; C~) is evaluated on the i mesh. Then, using an inter- 
polating function HRHG, ' passing through the points of 
{ {xi; RHSp, i}li = 0; 1 . . .  ; N~g}, it is possible to approxi- 
mate the right-hand side of Eq. 13a at each node of the j 
mesh: RHSp, j = HRHS~ (~)  and to compute the provi- 

- n + l  " - sional quantity C~,j according to: 

~ n + l  n n 
Cp,  j = Cp, j "l- AtRHSp, j .  (26) 

interval [x d x I + 1] because, in our implementation of the 
Euler-Lagrange techniques, the maximum spacing on thej 
grid is constrained to a value no greater than the i mesh 
spacing to prevent any degradation of the spatial resolu- 
tion. The provisional solution in the plasma is computed 
according to: 

~ +1 n n Cnp,j = Cp,j + AtRHSp,j (27) 

The final plasma concentration is obtained after adding the 
convection step. 

This form of the Euler-Lagrange method provides good 
results for sufficiently smooth solutions, but is unsatisfac- 
tory near sharp concentration fronts. Equation 26 gives 
rise to oscillations near steep gradients because, during the 
interpolation, the quantity RHS~,, j is grossly either under- 
or overestimated. This behavior occurs whether oscillatory 
(i.e., piecewise quadratic polynomial, cubic spline) or 
nonoscillatory (i.e., piecewise linear polynomial, high- 
order essentially nonoscillatory piecewise polynomial) in- 
terpolation schemes are used. 

Because each of the two methods has deficiencies, we 
blend them as follows. We compute step 3 of Fig. 3 and 

n steps 2 and 3 of Fig. 4 to obtain tZ'vp, +i 1 and RHSp.j, re- 
spectively. Piecewise linear polynomials are used for the 
interpolation. Now, let us denote with the subscript I the 
node of the i mesh, which is immediately to the left of the 
jth node of the moving mesh. Then, ~j' belongs to the 

with 

M T +  1 =  M a x { ~ , + , l ;  ~ + l + , }  m ; + , = M i n { ~ + l ;  ~pp,/11 } 

IMin{AtRHSp,j; M7 +l - C~,j} (28) n 
A RHSp,j = M a x  m l n +  1 _ G , J  

Finally, the new solution is obtained by applying the con- 
vection step of Eq. 25. 

In effect, the algorithm of Eqs. 27 and 28 is limiting the 
amount of mass exchanged and consumed during one time 
step, AtRHSp. j (which is obtained with the scheme of Fig. 
4), so as to keep the new plasma concentration in the range 
delimited by the intermediate quantities ~" + ~n + 1 Up, 1 and ,...p, 1 + 1 

(which are provided by the scheme of Fig. 3). Figure 5 
gives a graphical interpretation of what Eqs. 27 and 28 do 
and show why this algorithm prevents the apparition of 
large oscillations. This version of the explicit Euler- 
Lagrange method has several advantages. First, it is accu- 

A 
Concentration 

Mln+l ~n+l  
= v,-- p, I 

n + l  
,J 

n+l 7,n+l 
m I = G p ,  i+1 

n 
C p ,  j 

I 
I 
I 

I 
I 
I 

. . . . . . . . . . . .  L . . . . . . . . . . . . . . . . . . .  

. . . . . . .  .~ 

B 
Concentration 

M~+I ~n+l  = (%n+l 
= Wp, I+1 vp,  j 

n+l ~n+l 
ml ="-p,l 

n Cp, j 

. . . .  "-t 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Distance Distance 

x ,  " -  " -  X I +  1 X l  X I + I  

FIGURE 5. Rationale for the algorithm of Eqs. 27 and 28. The goal is to keep the provisional value of the plasma concentration 
n+ l  n§  n n on the j mesh C ~  1 between the intermediate quantities Cp, I and Cp,/+ 1. (A) When At RHSp, j is added to C~j, the result is 

n n n n n+ l  n+ l  n§  n+ l  in the range [ml "; M; ], so RHSp, i=  RHSp, j. (B) In this example, (C~d= AtRHSp, j) falls outside of [mr ; M} ]. Therefore, Eq. 28 
limits the amount added to C~jto AtRHS~,j, which is chosen such that  c~n~ ~ = Mp +1. Notice that on both diagrams, the effect 
of the convection step is not shown. 
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rate even in the presence of steep concentration gradients. 
Next, its computational cost is half that of previous 
schemes. Finally, the stability analysis performed in the 
previous section directly applies to this algorithm. 

because mass conservation checks provide quick insights 
on the accuracy of the numerical solution. 

RESULTS AND DISCUSSION 

MacCormack Method and Flux-Corrected 
MacCormack Method 

The MacCormack method (21) is a finite difference 
method that uses a predictor step followed by a corrector 
step to achieve second-order accuracy in both space and 
time. Its application to a linear chromatography problem is 
derived by Finlayson (pp. 324-325 of Ref. 12). To extend 
the method to the nonlinear BTEX model, it is necessary 
to replace the transport and reaction rate constants of the 
linear model by the concentration-dependent permeabili- 
ties and reaction rates. Thus, the predictor step is applied 
with PS's and G's evaluated with the current concentra- 
tions, whereas in the corrector step, PS's and G's  are es- 
timated with the predicted concentrations. 

As described by Finlayson (12), the flux-corrected 
transport algorithm of Boris and Book (6) can be added to 
the MacCormack method to cure oscillations that appear 
when a steep concentration front is present in the plasma. 
When the solution does not have discontinuities or sharp 
axial gradients, the flux correction serves only to increase 
the computational cost at no gain in accuracy. Transport in 
the microcirculatory system seems to exhibit enough dis- 
persion to eradicate steep axial gradients, so that the flux- 
corrected transport algorithm is not used. The most reli- 
able "sharp front" indicator is the appearance of oscilla- 
tions in the solution from node to node. "Excessive 
dispersion" occurs for low Peclet number, in the range of 
1 to 10. 

In opposition to the random choice and Euler-Lagrange 
techniques, the MacCormack method is conservative (18). 
The implication in BTEX modeling is that, for a substrate 
that is not consumed, the mass that flows out of the ex- 
change unit and is estimated with the computed solution is 
equal to the mass of substrate injected: 

qout=FpAtE C~p,N,o : F p A t E  Cp.o=qin. 
n--O n=O 

This equality remains true even when the error in the 
numerical approximation of Cp is significant. Whether it is 
advantageous or not for the numerical technique to have a 
conservative property is an issue to which many differing 
answers have been given (see pp. 32-33 of Ref. 27). As far 
as BTEX modeling is concerned, we have not observed 
any important benefit of using a method conserving mass. 
The nonconservative character of the random choice and 
Euler-Lagrange techniques proves actually more useful, 

Accuracy and Efficiency of the Numerical Techniques 

Before the present model is used to analyze actual ex- 
periments, it is important to check its correctness by ap- 
plying it to simple problems with known solutions. For 
instance, let us reduce Eqs. 1 and 2 to 

OG +FpL O G Vmax., 
Ot % OX -- %(Kmr + Cp) Cp. (29) 

This is done by choosing an enzymatic reaction process in 
the plasma and by shutting down barrier transport and 
axial diffusion. The solution to this simple model is ex- 
pressed in terms of the reference concentration (8), al- 
though the concentration is expressed implicitly and must 
be solved for numerically; Linehan and coworkers (10,20) 
have used it extensively to study the unidirectional, satu- 
rable uptake of various substrates in the lung. For our 
purpose, the exact solution of Eq. 29 provides a reference 
against which numerical approximations can be checked. 
A comparison between the MacCormack solution and the 
pseudoanalytical solution is displayed in Fig. 6. Figures 
6b,c use different scales to show the tracer concentration- 
time curve at the outlet of the BTEX unit after the injec- 
tion of a bolus containing qtot moles of labeled and unla- 
beled substrate. In this simulation, the amount of tracer is 
proportional to that of mother substance; so, concentra- 
tions shown in Fig. 6 are divided by qtot for scaling pur- 
poses. The variations of the extraction ratio for the same 
computation are displayed in Fig. 6a. When the value of 
qtot is low,  the system is linear. In such case, the substrate 
is removed at a constant rate, and the instantaneous ex- 
traction remains constant. As the total amount of substrate 
is increased, however, nonlinearities appear as is shown by 
the dip in the extraction curve. The decrease in the extrac- 
tion reflects the saturation of the consumption process. 
The diminishment of the area confined between the nor- 
malized concentration curves for reference and tracer is 
also characteristic of this saturation. The particular model 
parameters used in this simulation are given in the caption 
of the figure. Notice that, although parameters are chosen 
in a range that corresponds to physiological conditions, no 
particular importance is attached to their values because, 
for now, our goal is simply to verify the correctness of the 
model output. Figure 6 demonstrates that the agreement 
between MacCormack, and exact solutions are very good 
when the model is approximating a simple limiting case 
whose behavior is nonlinear. For the same test problem, 
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FIGURE 6. Compar ison be tween  MacCormack and exact solu- 
tions for  a nonl inear  model .  Equat ion 29 is solved for tracer and 
nont racer  f rom t = 0 unt i l  t = 15 sec�9 w i t h  Fp = 5 ml  �9 min -1 �9 g- l ,  
Vp=O.1 m l . g - 1  L = 0 . 1  cm Vma x = 7  n m o l . m i n  - 1 - g - 1 .  

�9 1 �9 P Kn,_ = 0.7 nmol  �9 ml -  . The shape of  the input  funct ion is tha t  of  
a la"gged normal  densi ty  curve (1), w i t h  a mean t rans i t  t ime  of 4 
sec, a relative dispersion of 0.5�9 and a skewness of 1.2. The to ta l  
quan t i t y  of  substrate in the bolus�9 qtot, is 1, 30, 60, and 120 
nmol .  The a m o u n t  of  t racer  is p ropo r t i ona l  t o  t ha t  of  the 
mother substance. Lines represent analyt ica l  solut ions.  Sym- 
bols represent  numer ical  so lu t ions obta ined for qtot = 1, 30, 60, 
and 120 nmol  using the MacCormack method�9  respectively. 
Forty segments  are used. A t  = 0.25 sec, and the  s tab i l i ty  condi- 
t ion is replaced by Co ~< F, w i t h  F = 0.9. (a) Instantaneous ex- 
t ract ion rat io vs. t ime.  (b) Normal ized outflow concentration for 
substrate and reference ind icator  vs. t ime.  (c) Same as (b), but 
wi th  a semi log scale. All s imula t ion  curves are p lo t ted  by con- 
nect ing the solut ion at  successive data points  w i t h  s t ra ight  
lines. 

the Euler-Lagrange technique and random choice method 
also yield very good results that are not displayed herein. 
However, both of these techniques require more nodes in 
the linear range than needed by the MacCormack method 
to provide a solution that looks as good. If the problem is 
nonlinear, the Euler-Lagrange and random choice methods 
provide solutions just as good as the MacCormack method 
with the same number of nodes. 

In Fig. 7, the accuracy and the efficiency of each nu- 
merical method are studied more precisely. Equation 29 is 
solved for Cp, the nontracer concentration, with a set of 
parameters and inputs (given in the caption of the figure) 
such that conditions in the system are nonlinear. For each 
numerical technique, a solution is computed with an initial 
number of segments equal to 20, 40, 80 and 160. In all 
cases, the Courant number is one half. Because methods 
that work for Co = 1 sometimes do not work for Co v e 1, 
it is important to test a method with Co 4= 1. For each trial, 

the L2-norrn of the error with respect to the exact solution 
is plotted versus the computational time obtained on a Sun 
SPARCserver 470. 

Error= { ;  f :  [Cp,ou t ( t ) -  C~pXaC~ (t)]2 dt} '/2. 

Even though the test case is simpler than Eqs. 1 and 2, the 
times shown are those it takes to compute the full two- 
region model with tracer and nontracer substrates, because 
reduction to the test equation is achieved by setting rel- 
evant parameters to zero. As expected, each numerical 
technique has less error as the number of segments in- 
creases, and the computational cost increases as the accu- 
racy improves. Similar trends are observed when the error 
is estimated with the L 1 or the L~ norm. The random 
choice and Euler-Lagrange schemes are very close to each 
other. For a given number of segments, they produce so- 
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FIGURE 7. Efficiency plot. Equations I and 2 
are solved for Cp from t =  0 until t =  20 sec, 
wi th  Fp = 6 m l .  min -1 �9 g- l ,  Vp = 0.1 m l .  g-l �9 
L = 0.1 c m ,  Vmaxp : 3 0  nmol  �9 rain -1 �9 g - l ,  
Kma x = 4  nmol .m1-1  TT=O m o l - g - 1  and 

2 �9 �9 �9 �9 �9 Dp=O cm .sec -1. The input funct.on ,s a 
Gaussian curve, wi th  a mean of 6 sec and a 
relative dispersion of 0.5. The total quanti ty 
of substrate in the bolus is 50 nmol. Numeri -  
cal solut ions are computed  for an initial 
number  of segments equal to 20 ( leftmost 
symbols}�9 40, 80, and 160 (r ightmost sym- 
bols). In each case, the L 2 norm of the error 
wi th  respect to the exact solution is plotted 
versus the computat iona l  t ime.  For each 
simulation, the Courant number  is fixed to  
0.5. 

lutions with approximately the same error. Nevertheless, 
the random choice method is slightly faster than the mov- 
ing grid technique. This difference reflects the cost of 
interpolating from the moving mesh to the fixed grid and 
vice-versa. The MacCormack method is obviously less 
efficient for this test case. It is about twice as slow as the 
other methods, and its slowness is not offset by better 
accuracy. However, these results must be contrasted. First, 
let us remark that even the MacCormack method is an 
accurate method because, for the problem of Fig. 7, the 
computed concentration at the peak of the outflow curve 
remains within 0.6% of the exact solution. Such accuracy 
is often sufficient in the analysis of experimental data 
wherein many other uncertainties exist. Moreover, when 
the test of Fig. 7 is conducted with a Courant number equal 
to 1, the efficiency of the MacCormack method becomes 
comparable with that of the other techniques. 

The main drawback of the MacCormack method comes 
from the difficulty of deriving a practical stability crite- 
rion. The Von Neumann stability analysis is more com- 
plicated for the MacCormack method because convection, 
reaction, transport, and diffusion are all treated simulta- 
neously. Therefore, it is not possible to derive analytically 
a stability criterion. The MacCormack method also re- 
quires two evaluations of the PS's and G's per time step. 
As a result, the MacCormack method is not as well suited 
as the random choice and Euler-Lagrange techniques to 
meet our requirements of speed, accuracy, and robustness. 

This example should remind us of the difficulty of com- 
paring numerical methods. To compute the efficiency of a 
technique, one must know computational cost and error. 
Although the former is fairly predictable, the behavior of 
the latter is more uncertain. This stems from the fact that 
results produced by a numerical technique are affected by 
several types of error (truncation error and round-off er- 
ror). Unfortunately, the behavior of each of these compo- 
nents is not completely predictable, and it is therefore 

difficult to know in advance what the resultant of the error 
will be in a particular situation. Therefore, the best method 
for one problem is not necessarily the best method for 
another problem. In this context, our strategy is to present 
investigators with several numerical techniques. Then, one 
has the ability to check that results of one method cor- 
roborate results of the other. 

To illustrate this point further, we show a compari- 
son of the three numerical methods applied to a stiff 
nonlinear problems for which an analytical solution does 
not exist. Equations 1 and 2 with all reaction and axial 
diffusion terms set to zero are solved for the conditions 
shown in the caption of Fig. 8. Notice that P+o = P-o -- 
P+I = P-1 = P, so that Tzand p are not independent pa- 
rameters. Thus, it is sufficient to specify TTao/2. The prob- 
lem is stiff (and therefore difficult to solve numerically) 
because the dimensionless ratio PS/F is high. It ranges 
from about 100 to 600. Figures 8a,b compare the Mac- 
Cormack and random choice solutions, whereas Figs. 8c,d 
compare the MacCormack and Euler-Lagrange solutions. 
The plasma outflow concentration-time curves provided 
by the three techniques are in close agreement. The ex- 
traction curves slightly disagree because the calculation of 
the extraction amplifies small differences that were not 
detectable with the concentration curves. The random 
choice extraction-time curve is jagged because this nu- 
merical method does not propagate the solution wave 
smoothly in the spatial dimension, but by fixed increment 
of size Ax. Like the random choice method, the Euler- 
Lagrange technique sometimes produces jagged solutions. 
This is caused by the limiter of Eqs. 27 and 28 that ensures 
that large oscillations will not develop when the time step 
is too big, but works in such a way that the Euler-Lagrange 
solution for Cp might slightly vary around the true solu- 
tion. As in the random choice method, these subtle varia- 
tions are usually not problematic, unless they are largely 
amplified as is the case in Fig. 8a for the random choice 
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FIGURE 8. Compar ison be tween  numer ical  methods  for a stiff, non l inear  prob lem w i th  known  analyt ica l  so lut ion.  Equat ions 1 and 
2 are solved f rom t = 0  to  t = 2 5  sec, w i t h  Fp=5  m l . m i n - l - g  -1, Vp~0.05  m l - g  -1, Vc=0.25 m l . g  -1, L = 0 . 1  cm, K s = K , o = I  
nmol  �9 ml -~, P+o = P-o =P+I =P-~ = P, and pTT/2 = 3,000 nmol  �9 min -~ �9 g-  . There is no react ion and no axial  di f fusion. ~he input  
funct ion is a lagged normal  dens i ty  curve w i t h  a mean of 4 sec, a re lat ive dispersion of 0.5, and a skewness of 1.2. The to ta l  quan t i t y  
of  substrate in the bolus is 120 nmol .  Euler-Lagrange and random choice solut ions are obta ined w i t h  100 ini t ia l  segments  and 
[ '  = 0.8. The MacCormack me thod  is appl ied w i t h  75 segments  and Co ~< 0.15. (a and c) The ins tantaneous ext ract ion as a funct ion 
of t ime.  (b and d) The plasma concent ra t ion at  the  capi l lary ou t le t  d iv ided by the to ta l  mass of substrate in jected as a funct ion of 
t ime.  MacCormack (symbol)  and random choice (line) so lut ions are compared in (a) and (b). MacCormack (symbol)  and Euler- 
Lagrange (line) solutions are compared in (c) and (d). The random choice method is the fastest; the Euler-Lagrange technique and 
MacCormack method are 1.2 and 2,1 times slower, respectively. 

method. The concentration curves plotted versus distance 
at one time are not jagged. 

Random Choice, Euler-Lagrange, and Sliding Fluid Methods 

The random choice and the Euler-Lagrange techniques 
resemble the sliding fluid element model with finite dif- 

ference formulation of Bassingthwaighte et al. (3). In fact, 
all three methods treat convection separately from the rest 
of the physical processes and use finite differencing to 
integrate the resulting system of  ordinary differential 
equations. Each method, however, has its own way of 
solving the convection step, even though there is no ap- 
parent distinction when the Courant number is unity, In 
addition, the three techniques do not integrate Eq. 11 in the 



www.manaraa.com

Efficient Numerical Methods for BTEX Model 559 

same manner. For linear models without axial diffusion, 
Bassingthwaighte et al. use the fact that 

C n +1 = eAAtc n, (30) 
10-2 

(a) Linear model 

and approximate the exponential term with high-order 
Pad6 or Taylor series approximations to derive a finite 
difference expression. Because these high-order schemes 
yield very good results (4), one could wonder whether they 
can also be applied with the random choice or Euler- 
Lagrange techniques. The answer is yes. However, the 
resulting high-order schemes work well only for linear 
problems and, therefore, are not described in the present 
paper, which is concerned with nonlinear applications. To 
illustrate the difference between linear and nonlinear prob- 
lems (in Fig. 9a), Taylor series of o(At 2) and o(At 3) are 
used to approximate e Aat in Eq. 30. These approximations 
are used to create two forms of the random choice method. 
The first uses a Taylor series of o(At 2) and corresponds 
exactly to the random choice method described earlier. 
The second uses a Taylor series of o(At3). When these two 
forms of the random choice method are used to solve a 
linear problem, Fig. 9a shows that the scheme using a 
Taylor series of o(At 3) is more accurate by 4 orders of 
magnitude. Because it does not require many additional 
floating point operations, it is also more efficient. These 
conclusions, however, do not necessarily hold when a non- 
linear problem is solved. Figure 9b shows an example 
where the higher order scheme is the less efficient. This 
behavior arises because for nonlinear problems the deri- 
vation of Eq. 30 is not exact. Therefore, expanding e aat 
with more terms in the Taylor series does not yield better 
results. To perform the time integration more accurately, it 
is in fact necessary to apply high-order schemes designed 
for nonlinear problems (11). For each new method, how- 
ever, the trade-off between accuracy, speed, and memory 
requirements needs to be evaluated. A robust package also 
requires a strategy to adjust the time step. In the remainder 
of this study, we will only use the random choice and 
Euler-Lagrange techniques in conjunction with a Taylor 
series of o(At 2) to approximate e am (i.e., with the explicit 
first-order Euler scheme to integrate in time). 

Modeling "Backdiffusion," Return Flux from Tissue to Blood 

We mentioned earlier that Eq. 29 has been used to 
model the saturable uptake of various substrates in the 
lung. This model is appropriate under the assumptions of 
homogeneous organ perfusion and negligible backdiffu- 
sion. Backdiffusion is defined as the reflux into the plasma 
of substrate that has been previously absorbed. In the next 
section, we show how the BTEX unit introduced in this 
study alleviates the requirement for unidirectional mass 
exchange in the analysis of experimental data. Linehan et 
al. (20) solved a similar model (without axial dispersion or 
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FIGURE 9. Numerical error in the/-2 norm v e r s u s  number of 
segments when two  forms of the random choice method that 
use a Taylor series of o(At z) and of o(&t3)�9 respectively�9 to 
approximate e Aat are applied to a linear and a nonlinear prob- 
lem. (a) Linear problem: Eq. 28 with the right-hand side re- 
placed by (-Gmax~ C~/Vo} is solved with F D = 6 ml .  min -~- g-~�9 

1 ~ - -  - V, = 01 ml �9 g- L-- 0.1 cm Grnax -- 3 nmol �9 min -1 �9 g-1. The 
. �9 . � 9  . p 

shape of the input function is given by a lagged normal den- 
sity curve with a mean of 4 sec, a relative dispersion of 05 �9  
and a skewness of 1.2 The total quantity of substrate in the 
bolus is 5 nmol �9 g-~. (b) Nonlinear problem: Eq  28 is solved 
with Vmax = 30 nmol �9 min -1 �9 g-1 Kma x = 4 nmol �9 m1-1. All 

p . �9 p .  

other parameters are as in (a)  For both figures, the Courant 
number is uni ty  
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reaction), but they do not describe the mathematical  
method used. 

Instead of simulating the removal of  substrate with a 
reaction term like Eq. 29, let us use the transporter with 

P+o = P-o = P+l = P-1 = P. Then, the permeabi l i ty-  
surface area products become: 

TTp 1 TTp 1 
PSp~c - 2 K~ + Cp a n d  PSc---~P- 2 K~ + C~" 

(31) 

When, in addition, the equilibrium constant Ks, is large 
with respect to C c and Cc(Trp/2), the aforementioned 
equation shows that the flux from tissue to plasma is small 
and linear, so that there is little backdiffusion. Figure 10 
illustrates the model behavior when the binding equilib- 
rium constant at the barrier-tissue interface spans a wide 
range of values. Figure 10a shows the changing shape of 
the extraction curve as the ratio K = KJKs, goes from 105 
to 10 -2 . For the highest value, the curve resembles that of  
Fig. 6, because there is almost no reflux of tracer. For 
K = 1 0  4, it is only after about 15 sec that the tail of  the 
extraction curve bends down, indicating that tracer is dif- 
fusing back toward the plasma space. As K is decreased, 
backdiffusion becomes  noticeable earlier. This makes 
sense because then K~,, becomes smaller, the retention of 
tracer in the tissue diminishes as well. Eventually, when K 
approaches 0, the tracer is denied access to the tissue 
region. Therefore, the extraction remains null. The shape 
of the extraction curve for K = 0.1 is particularly inter- 
esting, because it passes through an inflection point and a 
minimum before leveling at a negative value. This behav- 
ior is better understood by comparing the normalized out- 
flow concentration profiles for tracer substrate and indi- 
cator reference. These curves are shown in Fig. 10b. For 
K = 0.1, the tracer concentration remains below the ref- 
erence concentration until both curves reach their peak. 
Then, as the substrate that had accumulated in the tissue is 
driven back into the plasma, the tracer concentration over- 
takes the reference concentration. This difference grows 
until a time of about 8 sec and finally retums to levels 
about 20% higher than the reference tracer concentration 
as the remaining substrate is washed out of the capillary 
unit. Notice that, in Figure 10b, the profile for K = 0.01 is 
not graphed, because it is not distinguishable from the 
reference curve. 

Although the shape of the extraction ratio curve pro- 
vides good indication on the importance of backdiffusion, 
it only gives information for the limited period of time 
when the reference concentration is not 0. In contrast, 
when backdiffusion is present but not too important, the 
tracer concentration curves can remain visible for a long 
period of time. Figure 11 shows the tail of  the tracer con- 
centration curve for several values of  K. For K /> 1, for 
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FIGURE 10. Effect of backdiffusion on the shape of the instan- 
taneous extraction ratio and of the outflow concentration 
curves at short times. A bolus containing reference indicator 
and tracer and nontracer substrate is injected into the BTEX 
unit  for which:  F p = 3  m l - g - l - m i n - 1 ;  V p = 0 . 0 5  m l - g - 1 ;  
Vc = 0.15 ml .  g-l;  L = 0.1 cm; no reaction; no axial diffusion; 
P+o = P-o = P+I = P-1 = 0.6 min-1;  TT= 16.667 nmol  �9 g - l ,  
K s = l n m o l . m 1 - 1  and K s = K  Ks. The shape of the input 

p , �9 �9 �9 c p . . 

funct ,on ,s g,ven by a lagged normal dens,ty curve wi th  a 
mean of 4 sec, a relative dispersion of 0.5�9 and a skewness of 
1.2. The total  quantity of substrate in the bolus is 30 nmol. (a) 
Extraction ratio versus t ime. (b) Normalized out f low concen- 
tration versus t ime. The dotted line represent the reference 
indicator. For clarity�9 the substrate concentration profile for 
K = 0.01 is not shown�9 because it falls on the reference curve. 

example, it is clear that the tail carries information about 
the exchange process. Consequently, the interpretation of 
experimental data requires that observation be made long 
enough. Of  course, it might not be easy to determine a 
priori to what extent measurements are needed, but one 
might gain valuable insight by using the predictive nature 
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FIGURE 11. Effect of backdiffusion on the shape of the out- 
flow concentration curves at long times. Conditions are iden- 
tical to those of Fig. 10, but the solution is computed until 
t =  200 sec. In addition, a semilogarithmic scale is used for 
plotting. For moderate to high values of K, the tail of the 
concentration curve provides information on the rate of back- 
diffusion. However, when K is very small (K < 0.1), long time 
solutions do not provide additional information. 

of the computer model early in the design stage of the 
experimental procedure. Although measurements can be 
made over several orders of magnitude, Fig. 11 is calcu- 
lated over 6 orders of magnitude to show the trends with K. 

Steady-State Plasma-Tissue Concentration Gradients 

One of the peculiarities of the transporter model is that 
permeability-surface area products from plasma to cells 
and from cells to plasma need not be equal. It is easy to 
show that this asymmetry can lead to the formation of a 
steady-state concentration difference between plasma and 
intracellular regions even in the absence of consumption. 
When there is only radial exchange and convective trans- 
port, the fluxes PSp __~cCp and PSc__~pC c a r e  equal at 
steady-state. From this equality, one readily derives: 

Cp P-lP+oKsp 
m 

Cc p+lP-oKsc" 
(32) 

This shows that there are many possibilities under which a 
steady-state concentration gradient can develop. For the 
situation we used to model backdiffusion, for example, all 
of the permeabilities for free-transporter and transporter- 
substrate complex are equal. As a result, the steady-state 
concentration difference is determined by the ratio of the 
binding equilibrium constants. The substrate accumulates 
preferentially in the intracellular region when Ksc > K~p, in 
the plasma region when Ksp > K~c, and there is no asym- 
metry when the equilibrium constants are equal. Of 
course, it is also possible that no steady-state gradient will 

exist when Ksp 4: K~c, but this can only occur when some 
asymmetry among the permeabilities for free transporter 
and complex exists. 

Modeling Axial Diffusion 

The present BTEX model allows inclusion of axial dif- 
fusion, which is modeled with a diffusion term as shown 
in Eq. 1. Inspection of Eq. 20 shows that terms due to the 
presence of axial diffusion impose a restriction on the time 
step that is proportional to Ax2/D. Thus, doubling the num- 
ber of segments on the spatial mesh necessitates the use of 
a time step 4 times smaller. One should keep this limita- 
tion in mind and appropriately reduce the number of mesh 
points when axial diffusion coefficients become large in 
order not to compromise computational efficiency. 

Not surprisingly, the effects of axial diffusion on the 
nonlinear model are similar to those described by Bass- 
ingthwaighte et al. (3,4) for linear models. In the tissue, 
the spreading effect of diffusion flattens concentration 
profiles along the length of the capillary. This, in turn, 
influences the rate at which tracer returns to the plasma in 
the stages after passage of the bolus. In the plasma, how- 
ever, the effect of axial diffusion is more important during 
the initial rise of the concentration. In addition, the shape 
of the concentration curve is less affected than that of the 
instantaneous extraction ratio. The latter is most sensitive 
to the difference between the diffusion coefficient for sub- 

~ s u b  strate, up , and that for the reference indicator, Dref This - -p  �9 

behavior is expected because, by definition, the instanta- 
neous extraction includes the substrate to reference nor- 
malized concentration ratio. The influence of axial diffu- 
sion on the instantaneous extraction is also important 
when D sub = Dref  An example is displayed in Fig. 12. - -p  - - p  �9 

Herein, the situation is identical to that of Fig. 6, but axial 
diffusion coefficients for reference and substrate have 
been set to 10 -3 cm 2" sec -1. As the bolus enters the cap- 
illary, the instantaneous extraction is diminished. This de- 
crease becomes more pronounced as Dp increases. When 
the total quantity of substrate in the bolus is sufficiently 
low, the extraction rises until it levels off. For higher 
doses, the minimum in the extraction curve is still present, 
but it no longer occurs simultaneously with the peak of the 
concentration curves. Later, in time, the extraction returns 
to a constant value that is slightly below that observed in 
the absence of axial diffusion. The value of Dp used in Fig. 
12 might be high in comparison with actual diffusion co- 
efficients, but this choice is deliberate. In fact, a large 
diffusion coefficient gives a clearer graph by amplifying 
the phenomena observed for lower Dp. Most importantly, 
we have chosen this value because it provides a picture 
that is remarkably similar to Fig. 5 of Ref. 18. To obtain 
this figure, Linehan and his coworkers used Eq. 29 to 
represent the uptake of substrate in a capillary, but built a 
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FIGURE 12. An example of the effect of axial diffusion on the 
instantaneous extraction. A bolus containing a reference in- 
dicator and a known dose of substrate is injected in a single 
BTEX unit such that: Fp = 5 ml �9 g-1 .  min-1; Vp = 0.1 ml �9 g-l;  
L =  0.1 cm; there is no radial transport (TT= 0); reaction in 
p lasma fo l lows Michae l is -Menten  kinetics wi th  Vm, .  = 7 
nmoI  �9 min -1 �9 g-1 and Kmp= 0.7 nmol �9 m1-1, and Dp =Pl0 -3 
cm z.  sec -1. The coefficient of axial diffusion is the same for 
intravascular reference and substrate. The shape of the input 
function is given by a lagged normal density curve wi th  a 
mean of 4 sec, a relative dispersion of 0.5, and a skewness of 
1.2. The total quantity of substrate in the bolus is successively 
0.1, 10, 30, 60, and 120 nmol. 

model (including several capillaries placed in parallel and 
with different transit times) to simulate heterogeneities 
within a lung. In contrast, we have used a single capillary 
for the entire organ. This is similar to the Turner capaci- 
tance model described by Rowlett and Harris (28). The 
resemblance between Linehan's Fig. 5 and our Fig. 12 
illustrates that axial diffusion and flow heterogeneities 
have similar effects, because both introduce dispersion in 
the system. By doing experiments at different flow rates, 
the two phenomena might be differentiated. The effect of 
axial dispersion would be reduced as the flow rate was 
increased, whereas the dispersion due to different transit 
times would remain the same as the flow rate was in- 
creased. 

Parameter Estimation 

The chief issue in parameter estimation is whether pa- 
rameters can be estimated accurately given experimental 
data. Bassingthwaighte et al. (4) have shown that linear 
BTEX models combined with a nonlinear curve-fitting 
program called SENSOP (9) give good parameter esti- 
mates. As one would expect, the quality of the estimates 
depends heavily on the availability of good data (i.e., data 
with little noise and good time resolution). In the next 
section, we present parameter estimation results for the 
nonlinear model. 

For testing Eq. 29, we look for the estimates of Vm~xp 
and Kmf ' given 21 data points collected every 0.25 sec from 
t = 3.75 until t = 9.00 sec. The initial guesses are 
Vmaxp = 7.5 and K% = 0.4. Data are obtained from the 

analytical solution to the model equation when Fp = 2 
m l . g - l . s e c - ] ,  V{~ = 0.05 m l . g - ] ,  L = 0.1 cm, 
Vmaxp = 5 nmol" g- �9 min -], and Kmp = 0.5 nmol" ml -l. 
In addition, the input function is given by a lagged normal 
density curve with a mean transit time of 5 sec, a relative 
dispersion of 0.4, a skewness of 1.2, and such that the total 
quantity of substrate in the bolus is 1 nmol" g-]. The prob- 
lem is solved using the random choice method, and the 
parameters are changed using the nonlinear optimizer 
SENSOP to pick the best values of Vmaxp and Kmp. The 
estimates are shown in the left-hand column of Table 1. 
When the number of segments is above 20, it is seen that 
parameter estimates converge to the exact parameter val- 
ues, because the absolute error is roughly divided by two 
when the number of segments is multiplied by the same 
factor. With fewer segments (i.e., 5 and 10), the conver- 
gence trend is not apparent because the numerical solution 
lies too far away from the exact solution. Such a situation 
usually leads to bad parameter estimates, but can often be 
detected by visual inspection of the solution. The same 
calculation, but using the Euler-Lagrange method to solve 
the problem, gives the results shown in the fight-hand 
column of Table 1. 

In a second experiment, 5% random Gaussian noise is 
added to the noise-free data. Table 2 displays the average 
of the estimates obtained after repeating the optimization 
for 20 noisy datasets. In this case, parameters are com- 
puted with SENSOP used in combination with the Euler- 
Lagrange technique and the analytical solution, for com- 
parison. As in the example without noise, the optimizer 
and the numerical technique (i.e., the Euler-Lagrange 
method herein), provide convergent parameter estimates 
once enough grid points are used (above 10 segments 
herein). However, they do not converge toward the exact 
solution o f  Wmaxp = 5 n m o l - g - I ,  min-i and K% = 0.5 
nmol" ml -~. Instead, they seem to converge toward the 
estimates provided by SENSOP and the analytical solution 
for the same sets of noisy data. 

In conclusion, efficient estimation of parameters from 
real data requires using enough grid points to obtain rea- 
sonable estimates, but not too many to keep the computa- 
tional cost down, and the parameter estimation can be 
done for the nonlinear model (Eq. 29). 

TABLE 1. Parameter estimation versus number of segments. 

Random choice Euler-Lagrange 

Nseg Vmax p Kmp Vmaxp Kr% 
5 5.736 0.861 4.906 0.455 

10 5.086 0.491 5.019 0,528 
20 5.012 0.518 5.011 0.517 
40 5.007 0.510 5.007 0.510 
80 5.003 0.505 5.003 0.505 

160 5.001 0.502 5.001 0.502 

Exact 5.000 0.500 5.000 0.500 
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TABLE 2. Parameter estimation in the presence of 5% 
random Gaussian noise added to a noise-free 

known solution 

Vma x Km 
Nseg (Mean +PSD) (Mean '_ SD) 

5 4.901 _+ 0.067 0.446 + 0.063 
10 5.011 + 0.070 0.518 + 0.067 
20 5.004 + 0.069 0.508 _+ 0.066 
40 4.999 + 0.069 0.500 _+ 0.065 
80 4.995 + 0.069 0.494 _+ 0.064 

Analyt ical  4.992 + 0.069 0.490 + 0.064 

For 20 noisy datasets, parameters are est imated wi th  SENSOP 
plus the Euler-Lagrange method for di f ferent value of  the ini- 
t ial number  of segments, and wi th  SENSOP plus an analyt ical 
model  solut ion (last row). 

CONCLUSION 

We have developed a nonlinear BTEX model that in- 
cludes facilitated transport, consumption, and axial diffu- 
sion. Three numerical techniques suited to nonlinear con- 
vection-dominated problems have been implemented to 

solve the resulting set of  nonlinear partial differential 
equations. The random choice and the Euler-Lagrange 
techniques are preferred over the MacCormack method 
because they provide both efficiency and robustness. We  
have also illustrated some of  the model behaviors, and 
have shown that the nonlinear BTEX model can provide 
reliable parameter estimates from noisy data. In this work, 
however, we have only used a single BTEX unit. This is a 
stringent limitation, because such a model does not allow 
directly for intraorgan flow heterogeneities except via the 
approximate method of  using high degrees of  intravascular 

axial mixing or dispersion. 
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N O M E N C L A T U R E  

A, aij = 
B = 
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D = 
E = 
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H = 
i = 
I = 

12 
k �9 = 
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Ks = 

K t m r  

L = 
M = 
m = 

n = 

Nseg = 

P+I = 

P+o 

PS 

RHS 
q 
S 
t 

T 
T 

matrix, matrix elements in Fourier analysis 
differential operator in Eq. 11 

concentration nmol"  m1-1 
Courant number, u At/&x 
axial diffusion coefficient (cm 2. sec -~) 

extraction ratio, 1 - Cp(L,t)/Cref(L,t) 
flow rate of plasma (ml min -~ �9 g - l )  
reaction rate (nmol min -1 �9 g - l )  

amplification matrix in Fourier analysis 
interpolation function 
node index 
identity matrix 

- -  - -  - - 1  

reaction rate in binding reaction (min -~) 
integer in random choice method 
a f f in i ty  c o n s t a n t  for  r eac t ion  rate ,  Eq. 5 
(nmol �9 m1-1) 

affinity constant  for transport  rate, r = p or 
c (nmol �9 m1-1) 

length of  capillary (cm) 
maximum quantity in interpolation method 
minimum quantity in interpolation method 
number of  t ime steps 
number of  spatial segments 
rate at which the transporter-substrate complex 
flips or translocates the substrate binding site in 
the direction from plasma to cell and from cell 
to plasma, respectively (min -1) 

rate at which the free transporter flips or trans- 
locates the substrate binding site in the direction 
from plasma to cell and from cell to plasma, 
respectively (min -~) 
p e r m e a b i l i t y - s u r f a c e  a r e a  p r o d u c t  (ml  
min- l  . g - l )  

= right-hand side in interpolation method, Eq. 13 
= total moles (nmol) 
= substrate molecule 

= time (min) 
= free transporter molecule 

= su r face  c o n c e n t r a t i o n  o f  f ree  t r a n s p o r t e r  

TS 
TC 

U 

Vr 

Vmax 

V'maxr 

(nmol �9 g - l )  

= transporter-substrate complex 
-- surface concentration of  transporter-substrate 

complex (nmol �9 g - i )  

= velocity of  plasma ( cm.  min -1) 
= volume of  distribution in region r (r  = c or p) 

(ml .  g- l )  

= maximum rate of  metabolism for reaction rate 
after Michaelis-Menten kinetics (ml .  g - l )  

= maximum rate of  transport in transport rate after 
M i c h a e l i s - M e n t e n  k i n e t i c s  ( r  = p  o r  c) 
(nmol �9 g-1 .  min-1) 

= axial location (cm) 

Greek symbols 

8 

h 
K 

F 

= parameter in transport reaction (min -1) 
= parameter in transporter reaction 
= Fourier variable; location in moving mesh 
= eigenvalues of amplification matrix 

= K,/K,~ 
= scaling factor in time-step limitation 

Subscripts 

c = intracellular region 
c ~ p = intracellular region to plasma 
ex = exact value 
in = inlet value 

n = number of  time step 
num = numerical solution 
out = outlet value 
p = plasma region 
p ~ c = plasma to intracellular region 

r = generic, = p or c 
ref = reference 
sub = substrate 
t = total 
T = total transporter sites 
0 = initial value at time 0 

Superscripts 

* = tracer concentration 

tot = total 
= intermediate quantity 

^ = Fourier coefficient 
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